4.5 Article

Biocompatibility and biodegradation of a bone composite containing tricalcium phosphate and genipin crosslinked gelatin

Journal

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A
Volume 69A, Issue 4, Pages 709-717

Publisher

WILEY-LISS
DOI: 10.1002/jbm.a.30045

Keywords

genipin; gelatin; osteoblast; rat calvarial organ culture; implantation

Ask authors/readers for more resources

A biodegradable composite (GGT) containing tricalcium phosphate ceramic particles and genipin crosslinked gelatin was developed for use as a bone substitute. The objective of this study was to assess the biocompatibility and the osteoconductivity of the GGT composite on new bone formation in vitro. Additionally, biodegradation and biocompatibility of the GGT composite in animals were investigated. Results of the GGT composites cocultured with osteoblasts showed that the concentration of genipin used as a crosslinking agent should be < 0.5 wt% to avoid cytotoxicity. For in vivo degradation studies, we found that when the concentration of genipin in the composite < 0.5 wt% was not enough to fully crosslink the gelatin, it results in a rapid degradation of the gelatin-genipin mixture. However, we also found that the foreign body capsule surrounding the GGT composite containing 1.0 wt% of the genipin was much thicker than that in the other three groups, that is, the composites containing 0.05, 0.1, and 0.5 wt% of the genipin. We therefore concluded that the ideal concentration of genipin used in the GGT was 0.5 wt%. Finally, we examined the organ culture units, which were maintained in cultured medium for 5 weeks. Morphology of tissue was observed and the quantitative evaluation of the regenerated bone was determined. We found that the GGT composites containing 0.5 wt% of the genipin had an excellent biocompatibility and could produce osteoconduction for the regenerating bone tissues. (C) 2004 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available