4.6 Article

Microstructure of precipitated au nanoclusters in TiO2

Journal

JOURNAL OF APPLIED PHYSICS
Volume 95, Issue 12, Pages 8185-8193

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1748859

Keywords

-

Ask authors/readers for more resources

Gold nanoclusters dispersed in TiO2(110) single crystal have been formed by 2 MeV Au2+ implantation to an ion fluence of 6.0x10(16) cm(-2) at 300 and 975 K followed by annealing at 1275 K for 10 h. The morphological features, size, crystallographic orientation of the Au nanoclusters with respect to the TiO2 matrix, and the interface structure between the Au nanoclusters and TiO2 have been investigated using conventional transmission electron microscopy (TEM), high-resolution TEM (HRTEM), electron diffractions, and high angle annular dark-field (HAADF) imaging in an aberration corrected scanning TEM (STEM). STEM-HAADF image directly reveals that Au atoms are in the substitutional Ti atomic columns in the TiO2 lattice prior to nucleation of Au cluster. An Atomic structural model of the interface between Au and TiO2 was established based on HRTEM and image simulations. The precipitated Au clusters show typical (111) twins. Au clusters are faceted along Au{112}, Au{111}, and Au{220} planes. Two types of orientation relationship can be identified, Au<110>//TiO2[001] and Au{111}//TiO2(200), and Au<110>//TiO2[001] and Au{111}//TiO2(110). These orientation relationships as well as the {111} twining feature in Au clusters are similarly observed for Au clusters grown on stoichiometric TiO2(110) free surface, indicating that the presently established orientation corresponds to the lowest interfacial energy for Au contacted with TiO2. This is essential for understanding the catalytic properties of Au supported on TiO2. (C) 2004 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available