4.7 Article

Multiple deficiencies in antioxidant enzymes in mice result in a compound increase in sensitivity to oxidative stress

Journal

FREE RADICAL BIOLOGY AND MEDICINE
Volume 36, Issue 12, Pages 1625-1634

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2004.03.016

Keywords

-

Funding

  1. NIA NIH HHS [R01 AG16998, P01 AG020591, P03 AG13319, P30 AG013319] Funding Source: Medline

Ask authors/readers for more resources

To examine the effect of compound deficiencies in antioxidant defense, we have generated mice (Sod2(+/-)/ Gpx1(-/-)) that are deficient in Mn superoxide dismutase (MnSOD) and glutathione peroxidase 1 (Gpx1) by breeding Sod2(+/-) and Gpx1(-/-) mice together. Although Sod2(+/-)/Gpx(-/-) mice showed a 50% reduction in MnSOD and no detectable Gpx1 activity in either mitochondria or cytosol in all tissues, they were viable and appeared normal. Fibroblasts isolated from Sod2(+/-)/GPx1(-/-) mice were more sensitive (4- to 6-fold) to oxidative stress (t-butyl hydroperoxide or gamma irradiation) than fibroblasts from wild-type mice, and were twice as sensitive as cells from Sod2(+/-) or Gpx1(-/-) mice. Whole-animal studies demonstrated that survival of the Sod2(+/-)/Gpx1(-/-) mice in response to wholebody gamma irradiation or paraquat administration was also reduced compared with that of wild-type, Sod2(+/-), or Gpx1(-/-) mice. Similarly, endogenous oxidative stress induced by cardiac ischemia/reperfusion injury led to greater apoptosis in heart tissue from the Sod2(+/-)/Gpx1(-/-) mice than in that from mice deficient in either MnSOD or Gpx1 alone. These data show that Sod2(+/-)/Gpx1(-/-) mice, deficient in two mitochondrial antioxidant enzymes, have significantly enhanced sensitivity to oxidative stress induced by exogenous insults and to endogenous oxidative stress compared with either wild-type mice or mice deficient in either MnSOD or Gpx1 alone. (C) 2004 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available