4.8 Article

A bifunctional poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 126, Issue 23, Pages 7206-7211

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja049195r

Keywords

-

Funding

  1. NCI NIH HHS [N01-CO37122] Funding Source: Medline

Ask authors/readers for more resources

A trifluoroethylester-terminal poly(ethylene glycol) (PEG) silane was synthesized and self-assembled on iron oxide nanoparticles. The nanoparticle system thus prepared has the flexibility to conjugate with cell targeting agents via either carboxylic or amine terminal groups for a number of biomedical applications, including magnetic resonance imaging (MRI) and controlled drug delivery. The trifluoroethylester silane was synthesized by modifying a PEG diacid to form the corresponding bistrifluoroethylester (TFEE), followed by a reaction with 3-aminopropyltriethoxysilane (APS). The APE; coupled with PEG chains confers the stability of PEG self-assembled monolayers (SAMs) and increases the PEG packing density on nanoparticles by establishing hydrogen bonding between the carbonyl and amine groups present within the monolayer structure. The success of the synthesis of the PEG TEFE silane was confirmed with H-1 NMR and Fourier transform infrared spectroscopy (FTIR). The conjugating flexibility of the PEG TEFE was demonstrated with folic acid that had carboxylic acid groups and amine terminal groups, respectively, and was confirmed by FTIR. TEM analysis showed the well-dispersed nanoparticles before and after they were coated with PEG and folic acid.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available