4.8 Article

Block copolymer-coated calcium phosphate nanoparticles sensing intracellular environment for oligodeoxynucleotide and siRNA delivery

Journal

JOURNAL OF CONTROLLED RELEASE
Volume 97, Issue 2, Pages 345-356

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jconrel.2004.03.031

Keywords

polymeric micelle; block copolymer; gene silencing; calcium phosphate; siRNA

Ask authors/readers for more resources

The organic-inorganic hybrid nanoparticles entrapping oligodeoxynucleotide (ODN) or siRNA were prepared through the self-associating phenomenon of the block copolymer, poly(ethylene glycol)-block-poly(aspartic acid) (PEG-PAA), with calcium phosphate. The nanoparticles have diameters in the range of several hundreds of nanometers depending on the PEG-PAA concentration and revealed excellent colloidal stability due to the steric repulsion effect of the PEG layer surrounding the calcium phosphate core. The loading capacities of ODN and siRNA were fairly high, reaching almost 100% under optimal conditions. The flowcytometric analysis and confocal microscopy observation indicated that the hybrid nanoparticles loaded with ODN were taken up by the cells through the endocytosis mechanism. Furthermore, the calcium phosphate core dissociates in the intracellular environment with appreciably lowered calcium ion concentration compared to the exterior, allowing the release of the incorporated ODN and siRNA in a controlled manner. Eventually, effective intracellular delivery and nuclear localization of these nucleic acid-based drugs were evidenced through the observation of laser confocal microscopy using FITC-labeled ODN. This smart ion-sensitive characteristic of hybrid nanoparticles was further demonstrated by the appreciable silencing of reporter gene expression by siRNA incorporated in the nanoparticles. (C) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available