4.4 Article

N-linked glycosylation in the CXCR4 N-tenninus inhibits binding to HIV-1 envelope glycoproteins

Journal

VIROLOGY
Volume 324, Issue 1, Pages 140-150

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.virol.2004.03.005

Keywords

human immunodeficiency virus (HIV-1); envelope glycoprotein (gp120); CXCR4; paramagnetic proteoliposomes (PMPLs); N-linked glycosylation; stromal cell-derived factor (SDF)-1 alpha

Categories

Funding

  1. NIAID NIH HHS [AI28691, R01 AI043891, AI41851] Funding Source: Medline
  2. NINDS NIH HHS [NS35734, NS37277] Funding Source: Medline

Ask authors/readers for more resources

CXCR4 is a co-receptor along with CD4 for human immunodeficiency virus type 1 (HIV-1). We investigated the role of N-linked glycosylation in the N-terminus of CXCR4 in binding to HIV-1 gp120 envelope glycoproteins. Gp120s from CXCR4 (X4) and CCR5 (R5) using HIV-1 strains bound more efficiently to non-N-glycosylated than to N-glycosylated CXCR4 proteoliposomes in a CD4-dependent manner. Similar results were observed in binding studies using non-N-glycosylated or N-glycosylated CXCR4 expressed on cells. Mutation of the N-glycosylation site N11 in CXCR4 (N11Q-CXCR4) enhanced CD4-dependent binding of X4 and R5 gp120s and allowed more efficient entry of viruses pseudotyped with X4 or R5 HIV-1 envelope glycoproteins. However, the binding of R5 gp120 to N11Q-CXCR4 and entry of R5 HIV-1 viruses into cells expressing N11Q-CXCR4 were 20- and 100- to 1000- fold less efficient, respectively, than the levels achieved using X4 gp120 or X4 HIV-1 viruses. Binding of stromal cell-derived factor (SDF)-1alpha, the natural ligand of CXCR4, and SDF-1alpha-induced signaling were reduced by the N11Q mutation. These findings demonstrate that N-glycosylation at N11 inhibits the binding of CXCR4 to X4 and R5 HIV-1 gp120, and provide a better understanding of the structural elements of CXCR4 involved in HIV-1 Env-co-receptor interactions. (C) 2004 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available