4.7 Article

Testing the locality of transport in self-gravitating accretion discs

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 351, Issue 2, Pages 630-642

Publisher

OXFORD UNIV PRESS
DOI: 10.1111/j.1365-2966.2004.07811.x

Keywords

accretion, accretion discs; gravitation; instabilities; stars : formation; galaxies : active

Ask authors/readers for more resources

In this paper, we examine the issue of characterizing the transport associated with gravitational instabilities in relatively cold discs, discussing in particular the conditions under which it can be described within a local, viscous framework. We present the results of global, three-dimensional, smoothed particle hydrodynamics simulations of self-gravitating accretion discs, in which the disc is cooled using a simple parametrization for the cooling function. Our simulations show that the disc settles in a 'self-regulated' state, where the axisymmetric stability parameter Qapproximate to 1 and where transport and energy dissipation are dominated by self-gravity. We have computed the gravitational stress tensor and compared our results with expectations based on a local theory of transport. We find that, as long as the disc mass is smaller than 0.25M(star) and the aspect ratio H/Rless than or similar to 0.1, transport is determined locally, thus allowing for a viscous treatment of the disc evolution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available