3.8 Article

Neuroprotective effects of estradiol in newborn female rat hippocampus

Journal

DEVELOPMENTAL BRAIN RESEARCH
Volume 150, Issue 2, Pages 191-198

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.devbrainres.2004.03.006

Keywords

development and regeneration; neuronal death; developmental; excitotoxicity; ischemia; kainic acid

Funding

  1. NIGMS NIH HHS [GM 08663] Funding Source: Medline
  2. NIMH NIH HHS [R01 MH 52716] Funding Source: Medline

Ask authors/readers for more resources

Perinatal brain injury, consequent to hypoxic/ischemic events, is associated with the release of excess excitatory neurotransmitters, including glutamate. We have previously shown that administration of a glutamate receptor agonist, kainic acid (KA), to postnatal day 0 (PN0) and PN1 rats results in damage selective to the dentate gyrus of females. Pretreatment with the gonadal steroid estradiol prevents KA-induced damage to the female dentate gyrus. To begin to elucidate the cellular mechanism of the neuroprotective effects of estradiol in neonatal females. we have employed the estrogen receptor antagonists Tamoxifen and ICI 182,780 in vivo and in vitro, respectively. Peripheral administration of Tamoxifen, which crosses the blood-brain barrier, prevented estradiol-mediated neuroprotection against KA-induced damage in the dentate gyrus. The highly selective estrogen receptor antagonist ICI 182,780, which does not penetrate into the brain from the periphery, also prevented estradiol's protective effects on KA-induced cell death in cultured hippocampal neurons but only late in the time course of injury. The data suggest that the neuroprotection afforded by estradiol against KA-induced injury in the female is estrogen receptor mediated but may include an additional mechanism that is not antagonized at the receptor. (C) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available