4.8 Article

A proteoglycan mediates inductive interaction during plant vascular development

Journal

NATURE
Volume 429, Issue 6994, Pages 873-878

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature02613

Keywords

-

Ask authors/readers for more resources

Inductive cell-cell interactions are essential for controlling cell fate determination in both plants and animals(1); however, the chemical basis of inductive signals in plants remains little understood. A proteoglycan-like factor named xylogen mediates local and inductive cell-cell interactions required for xylem differentiation in Zinnia cells cultured in vitro(2,)3. Here we describe the purification of xylogen and cloning of its complementary DNA, and present evidence for its role in planta. The polypeptide backbone of xylogen is a hybrid-type molecule with properties of both arabinogalactan proteins and nonspecific lipid-transfer proteins. Xylogen predominantly accumulates in the meristem, procambium and xylem. In the xylem, xylogen has a polar localization in the cell walls of differentiating tracheary elements. Double knockouts of Arabidopsis lacking both genes that encode xylogen proteins show defects in vascular development: discontinuous veins, improperly interconnected vessel elements and simplified venation. Our results suggest that the polar secretion of xylogen draws neighbouring cells into the pathway of vascular differentiation to direct continuous vascular development, thereby identifying a molecule that mediates an inductive cell cell interaction involved in plant tissue differentiation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available