4.7 Article

Clar valence bond representation of π-bonding in carbon nanotubes

Journal

JOURNAL OF ORGANIC CHEMISTRY
Volume 69, Issue 13, Pages 4287-4291

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jo035589+

Keywords

-

Ask authors/readers for more resources

The application of the Clar aromatic sextet valence bond (VB) model to extended, defect-free single-walled carbon nanotubes (CNTs) with roll-up vectors (m, n) provides a real space model of their electronic structure. If m - n = 3k, where k is an integer, then all pi-electrons can be represented by aromatic sextets, and the CNT is fully benzenoid; the converse is also true. Since m - n = 3k is known to be a necessary criterion for conductivity in CNTs, only fully benzenoid CNTs are metallic, and only potentially metallic CNTs are fully benzenoid. This behavior contrasts with that of planar polycyclic aromatic hydrocarbons, in which the fully benzenoid structures are known to have large HOMO-LUMO gaps. For CNTs that are not fully benzenoid, e.g., m - n = 3k + l, where l = 1 or 2 and k is an integer, a seam of double bonds wraps about an otherwise benzenoid CNT at the chiral angle - 60degrees or the chiral angle, respectively. Nucleus-independent chemical shift calculations on hydrogen-terminated CNT segments support this, and show that the magnetic manifestation of aromatic sextets is not due to electron correlation. The resonance hybrid of the Clar VB structures corresponds to patterns occasionally observed in scanning tunneling microscopy images of CNTs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available