4.6 Article

Magnetic properties of vacancies in graphene and single-walled carbon nanotubes

Journal

NEW JOURNAL OF PHYSICS
Volume 6, Issue -, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/6/1/068

Keywords

-

Ask authors/readers for more resources

Spin-polarized density functional theory has been used to study the properties of vacancies in a graphene sheet and in single-walled carbon nanotubes (SWNTs). For graphene, we find that the vacancies are magnetic and the symmetry of the sheet is broken by the distortion of an atom next to the vacancy site. We also studied vacancies in four armchair SWNTs from (3,3) to (6,6) and six zigzag SWNTs from (5,0) to (10,0). Our calculations demonstrate that vacancies can change the electronic structure of SWNTs, converting some metallic nanotubes to semiconductors and vice versa. Metallic nanotubes with vacancies exhibit ferro- or ferrimagnetism, whereas some semiconducting nanotubes with vacancies show an antiferromagnetic order. The magnetic properties depend on chiralities of the tubes, the configuration of the vacancy and the concentration of the vacancies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available