4.7 Article

Association of DNA-dependent protein kinase with hypoxia inducible factor-1 and its implication in resistance to anticancer drugs in hypoxic tumor cells

Journal

EXPERIMENTAL AND MOLECULAR MEDICINE
Volume 36, Issue 3, Pages 233-242

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/emm.2004.32

Keywords

DNA-PK; drug resistance; HIF-1; hypoxia introduction

Ask authors/readers for more resources

Tumor hypoxia contributes to the progression of a malignant phenotype and resistance to ionizing radiation and anticancer drug therapy. Many of these effects in hypoxic tumor cells are mediated by expression of specific set of genes whose relation to therapy resistance is poorly understood. In this study, we revealed that DNA-dependent protein kinase (DNA-PK), which plays a crucial role in DNA double strand break repair, would be involved in regulation of hypoxia inducible factor-1 (HIF-1). HIF-1beta-deficient cells showed constitutively reduced expression and DNA-binding activity of Ku, the regulatory subunit of DNA-PK. Under hypoxic condition, the expression and activity of DNA-PK were markedly induced with a concurrent increase in HIF-1alpha expression. Our result also demonstrated that DNA-PK could directly interact with HIF-1, and especially DNA-PKcs, the catalytic subunit of DNA-PK, could be involved in phosphorylation of HIF-1alpha, suggesting the possibility that the enhanced expression of DNA-PK under hypoxic condition might attribute to modulate HIF-1alpha stabilization. Thus, the correlated regulation of DNA-PK with HIF-1 could contribute to therapy resistance in hypoxic tumor cells, and it provides new evidence for developing therapeutic strategies enhancing the efficacy of cancer therapy in hypoxic tumor cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available