4.5 Article

Meisenheimer complexes bonded at carbon and at oxygen

Journal

Publisher

AMER CHEMICAL SOC
DOI: 10.1016/j.jasms.2004.03.006

Keywords

-

Ask authors/readers for more resources

The carbon-bonded gas-phase Meisenheimer complex of 2,4,6-trinitrotoluene (TNT) and the nitromethyl carbanion CH2NO2- (m/z 60) is generated for the first time by chemical ionization using nitromethane as the reagent gas. Collision-induced dissociation (CID) of the Meisenheimer complex furnishes deprotonated TNT, a result of the higher gas-phase acidity of TNT than nitromethane. The formation of Meisenheimer complexes with CH2NO2- in the gas phase is selective to highly electron-deficient compounds such as dinitrobenzene and trinitrobenzene and does not occur with organic molecules with lower electron-affinity such as methanol, methylamine, propionaldehyde, acetone, ethyl acetate, chloroform, toluene, in-methoxytoluene, and even nitrobenzene and p-fluoronitrobenzene. As such, the reaction allows selective detection of TNT in mixtures. Meisenheimer complexes between CH2NO2- and the three dinitrobenzene isomers display distinctive fragmentations. The oxygen-bonded sigma-complex of TNT with the deprotonated hemiacetal anion CH3OCH2O- (m/z 61), represents a different type of Meisenheimer complex. It displays characteristic fragmentation involving loss of HNO2 upon CID. The combination of a selective ion/molecule reaction (Meisenheimer complex formation) followed by a characteristic CID process provides a second novel and highly selective approach to the detection of TNT and closely related compounds in mixtures. The assay is readily implemented using neutral loss scans in a triple quadrupole mass spectrometer. Gas-phase reactions of denitrosylated TNT with benzaldehyde produce the corresponding dihydrofuran in an aldol condensation, a result that parallels the corresponding condensed-phase reaction. (C) 2004 American Society for Mass Spectrometry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available