4.5 Article

Physicochemical and engineering behavior of cement treated clays

Journal

Publisher

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)1090-0241(2004)130:7(696)

Keywords

marine clays; cements; soft soils; microstructure; microscopy; particle size distribution; material properties

Ask authors/readers for more resources

This paper examines the relationship between the microstructure and engineering properties of cement-treated marine clay. The microstructure was investigated using x-ray diffraction, scanning electron microscopy, pH measurement, mercury intrusion porosimetry, and laser diffractometric measurement of the particle size distribution. The engineering properties that were measured include the water content, void ratio, Atterberg limit, permeability, and unconfined compressive strength. The results indicate that the multitude of changes in the properties and behavior of cement-treated marine clay can be explained by interaction of four underlying microstructural mechanisms. These mechanisms are the production of hydrated lime by the hydration reaction which causes flocculation of the illite clay particles, preferential attack of the calcium ions on kaolinite rather than on illite in the pozzolanic reaction, surface deposition and shallow infilling by cementitious products on clay clusters, as well as the presence of water trapped within the clay clusters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available