4.7 Review

Regulating a translational regulator: mechanisms cells use to control the activity of the fragile X mental retardation protein

Journal

CELLULAR AND MOLECULAR LIFE SCIENCES
Volume 61, Issue 14, Pages 1714-1728

Publisher

SPRINGER BASEL AG
DOI: 10.1007/s00018-004-4059-2

Keywords

fragile X syndrome; alternative splicing; translational control; posttranslational modification; asymmetric dimethylarginine; phosphorylation

Ask authors/readers for more resources

Fragile X syndrome results from the loss of a normal cellular protein, FMRP. FMRP is an RNA binding protein, and it is likely that altering the way FMRP's messenger RNA (mRNA) targets are processed results in the clinical features associated with the disease. Using complementary DNA microarray screening, a number of brain-derived mRNAs that interact directly with FMRP in vitro and associate with FMRP-containing mRNPs in vivo have been identified. These target messages encode RNA-binding proteins, transcription factors, neuronal receptors, cytoskeletal proteins, a few enzymes as well as several unknown proteins. For a subset of these mRNAs it has been shown that modulating FMRP levels in cultured cells correspondingly affects their expression. In addition, several modes by which cells modulate FMRP activity have been described; these include posttranscriptional processing and posttranslational modification. Here, the most recent results concerning the biochemical activities of FMRP and how they are affected by various modifications are reviewed. The data lead to a model signaling mechanism by which FMRP normally regulates the expression of its target mRNAs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available