4.7 Article

Revealing forms of iron in river-borne material from major tropical rivers of the Amazon Basin (Brazil)

Journal

GEOCHIMICA ET COSMOCHIMICA ACTA
Volume 68, Issue 14, Pages 3079-3094

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.gca.2004.01.014

Keywords

-

Ask authors/readers for more resources

The present study deals with the direct determination of colloidal forms of iron in river-borne solids from main rivers of the Amazon Basin. The contribution of different forms of colloidal iron have been assessed using ultrafiltration associated with various techniques including electron paramagnetic resonance spectroscopy (EPR), high resolution transmission electron microscopy (HRTEM), and micro proton-induced X ray emission analysis (muPIXE). EPR shows the presence of Fe3+ bound to organic matter (Fe3+-OM) and colloidal iron oxides. Quantitative estimate of Fe3+-OM content in colloidal matter ranges from 0.1 to 1.6 weight % of dried solids and decreases as the pH of the river increases in the range 4 to 6.8. The modeling of the field data with the Equilibrium Calculation of Speciation and Transport (ECOSAT) code demonstrates that this trend is indicative of a geochemical control resulting from the solubility equilibrium of Fe oxyhydroxide phase and Fe binding to organic matter. Combining EPR and muPIXE data quantitatively confirms the presence of colloidal iron phase (min. 35 to 65% of iron content), assuming no divalent Fe is present. In the Rio Negro, HRTEM specifies the nature of colloidal iron phase mainly as ferrihydrite particles of circa 20 to 50 A associated with organic matter. The geochemical forms of colloidal iron differentiate the pedoclimatic regions drained by the different rivers, corresponding to different major weathering/erosion processes. Modeling allows the calculation of the speciation of iron as mineral, organic and dissolved phases in the studied rivers. Copyright (C) 2004 Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available