4.5 Article

Biomass and carbon partitioning in switchgrass

Journal

CROP SCIENCE
Volume 44, Issue 4, Pages 1391-1396

Publisher

WILEY
DOI: 10.2135/cropsci2004.1391

Keywords

-

Categories

Ask authors/readers for more resources

Grasslands have an underground biomass component that serves as a carbon (C) storage sink. Switchgrass (Panicum virgatum L.) has potential as a biofuel crop. Our objectives were to determine biomass and C partitioning in aboveground and belowground plant components and changes in soil organic C in switchgrass. Cultivars Sunburst and Dacotah were field grown over 3 yr at Mandan, ND. Aboveground biomass was sampled and separated into leaves, stems, senesced, and litter biomass. Root biomass to 1.1-m depth and soil organic C to 0.9-m depth was determined. Soil C loss from respiratory processes was determined by measuring CO2 flux from early May to late October. At seed ripe harvest, stem biomass accounted for 46% of total aboveground biomass, leaves 7%, senesced plant parts 43%, and litter 4%. Excluding crowns, root biomass averaged 27% of the total plant biomass and 84% when crown tissue was included with root biomass. Carbon partitioning among aboveground, crown, and root biomass showed that crown tissue contained approximately 50% of the total biomass C. Regression analysis indicated that soil organic C to 0.9-m depth increased at the rate of 1.01 kg cm(-2) yr(-1). Carbon lost through soil respiration processes was equal to 44% of the C content of the total plant biomass. Although an amount equal to nearly half of the C captured in plant biomass during a year is lost through soil respiration, these results suggest that northern Great Plains switchgrass plantings have potential for storing a significant quantity of soil C.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available