4.5 Article

Glucose homeostasis and tissue transcript content of insulin signaling intermediates in four inbred strains of mice: C57BL/6, C57BLKS/6, DBA/2, and 129X1

Journal

ENDOCRINOLOGY
Volume 145, Issue 7, Pages 3307-3323

Publisher

ENDOCRINE SOC
DOI: 10.1210/en.2003-1400

Keywords

-

Funding

  1. NIDDK NIH HHS [R03 DK66207, R01 DK67536, K08 DK 02885-02] Funding Source: Medline

Ask authors/readers for more resources

Transgenic mice phenotypes generally depend on the background strains used in their creation. To examine the effects of genetic background on insulin signaling, we analyzed glucose homeostasis in four inbred strains of mice [C57BL/6 (B6), C57BLKS/6 (KLS), DBA/2 (DBA), and 129X1] and quantitated mRNA content of insulin receptor (IR) and its substrates in insulin-responsive tissues. At 2 months, the male B6 mouse is the least glucose-tolerant despite exhibiting similar insulin sensitivity and first-phase insulin secretion as the other strains. The 129X1 male mouse islet contains less insulin and exhibits a higher threshold for glucose-stimulated first-phase insulin secretion than the other strains. Female mice generally manifest better glucose tolerance than males, which is likely due to greater insulin sensitivity in liver and adipose tissue, a robust first-phase insulin secretion in B6 and KLS females, and improved insulin sensitivity in muscle in DBA and 129X1 females. At 6 months, although males exhibit improved first-phase insulin secretion, their physiology was relatively unchanged, whereas female B6 and KLS mice became less insulin sensitive. Gene expression of insulin signaling intermediates in insulin-responsive tissues was generally not strain dependent with the cell content of IR mRNA being highest. IR substrate (IRS)-1 and IRS-2 mRNA are ubiquitously expressed and IRS-3 and IRS-4 mRNA were detected in significant amounts in fat and brain tissues, respectively. These data indicate strain-, gender-, and age-dependent tissue sensitivity to insulin that is generally not associated with transcript content of IR or its substrates and should be taken into consideration during phenotypic characterization of transgenic mice.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available