3.8 Article

Carbon use, nitrogen use, and isotopic fractionation of ectomycorrhizal and saprotrophic fungi in natural abundance and 13C-labelled cultures

Journal

MYCOLOGICAL RESEARCH
Volume 108, Issue -, Pages 725-736

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0953756204000590

Keywords

-

Categories

Ask authors/readers for more resources

Stable isotopes in fruit bodies from field studies have been used to infer ectomycorrhizal or saprotrophic status and to understand carbon and nitrogen use, but few controlled culture studies have correlated source and fungal isotopic patterns. Here, we measured natural abundances of N-15 and C-13 in ten strains of ectomycorrhizal fungi and seven strains of saprotrophic fungi grown on agar with three different primary carbon sources: glucose, glucose plus malt extract, and potato dextrose agar. Eight fungal strains were also grown using position-specific, C-13-labelled glucose (C-1 through C-6 labelled). Most fungi resembled nitrogen sources in delta(15)N, suggesting that growth on agar media minimizes isotopic fractionation on uptake compared to growth on liquid media, and that in general saprotrophic and rnycorrhizal fungi process nitrogen similarly. Saprotrophic fungi were more depleted in C-13 than ectomycorrhizal fungi on all media, presumably because of assimilation of C-13-depleted, agar-derived carbon. Results on C-13-enriched glucose indicated that saprotrophic fungi obtained up to 45% of their carbon from the agar substrate. Fungi generally incorporated the individual carbon atoms of glucose in the order, C-4 < C-1 < C-2, C-3, C-5 < C-6, ranging from a mean of 9% for the C-4 atom to 21% for the C-6 atom. Based on these incorporation patterns and intramolecular C-13 patterns within glucose, differential incorporation of carbon atoms within glucose among fungal taxa contributed less than 1&PTSTHOUSND; to isotopic differences among taxa, whereas isotopic fractionation among taxa during metabolism varied up to 4&PTSTHOUSND;. Parallel studies of C-13-enriched and natural abundance substrates were crucial to interpreting our results.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available