4.7 Article

Preparation of titania nanotube-Cd0.65Zn0.35S nanocomposite by a hydrothermal sulfuration method for efficient visible-light-driven photocatalytic hydrogen production

Journal

APPLIED SURFACE SCIENCE
Volume 322, Issue -, Pages 265-271

Publisher

ELSEVIER
DOI: 10.1016/j.apsusc.2014.10.020

Keywords

Titania nanotube; Cd0.65Zn0.35S; Hydrothermal sulfuration; Good crystallinity; Hydrogen production

Funding

  1. National Natural Science Foundation of China [51172233, 51302263]

Ask authors/readers for more resources

Titania nanotube-Cd0.65Zn0.35S nanocomposite (Cd0.65Zn0.35S-TiO2) was synthesized from titanate nanotubes for ion change of Cd2+ and Zn2+ followed by hydrothermal sulfuration treatment using thiourea as sulfur source. The Cd0.65Zn0.35S-TiO2 with enhanced crystallinity of TiO2 nanotube can be obtained by increasing hydrothermal temperature from 90 degrees C to 120 degrees C. And further increasing hydrothermal temperature to 150 degrees C, TiO2 nanotubes collapse and transform into irregular shaped particles. The photocatalytic activity for hydrogen production of the prepared Cd0.65Zn0.35S-TiO2 with different hydrothermal temperature was investigated under visible-light irradiation. The result shows that the Cd0.65Zn0.35S-TiO2 with hydrothermal temperature of 120 degrees C presents the highest hydrogen evolution rate and photostability, which can be attributed to a rapid charge transfer at the interface between Cd0.65Zn0.35S and TiO2 nanotube due to the increased crystallinity and unique 1-D nanotubular structure of TiO2. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available