4.7 Article

Low temperature effects on photosynthesis and growth of grapevine

Journal

PLANT CELL AND ENVIRONMENT
Volume 27, Issue 7, Pages 795-809

Publisher

WILEY
DOI: 10.1111/j.1365-3040.2004.01184.x

Keywords

Vitis vinifera; chilling; growth; low temperature; photosynthesis

Categories

Ask authors/readers for more resources

Growth and photosynthesis of grapevine (Vitis vinifera L.) planted on two sloping cool climate vineyards were measured during the early growth season. At both vineyards, a small difference in mean minimum air temperature (1-3 degreesC) between two microsites accumulated over time, producing differences in shoot growth rate. The growth rates of the warmer (upper) microsite were 34-63% higher than the cooler (lower) site. Photosynthesis measurements of both east and west canopy sides revealed that the difference in carbon gain between the warmer and cooler microsites was due to low temperatures restricting the photosynthetic contribution of east-facing leaves. East-facing leaves at the warmer microsite experienced less time at suboptimal temperature while being exposed to high irradiance, contributing to an average 10% greater net carbon gain compared to the east-facing leaves at the cooler microsite. This chilling-induced reduction in photosynthesis was not due to net photo-inhibition. Further analysis revealed that CO2- and light-saturated photosynthesis of grapevines was restricted by stomatal closure from 15 to 25 degreesC and by a limitation of RuBP regeneration and/or end-product limitation from 5 to 15 degreesC. Changes in photosynthetic carboxylation efficiency implied that Rubisco activity may also play a regulatory role at all temperatures. This restriction of total photosynthetic carbon gain is proposed to be a major contributor to the temperature dependence of growth rate at both vineyards during the early season growth period.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available