4.5 Article

Gene expression profiling of rat livers reveals indicators of potential adverse effects

Journal

TOXICOLOGICAL SCIENCES
Volume 80, Issue 1, Pages 193-202

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/toxsci/kfh145

Keywords

toxicogenomics; mitochondrial toxicity; hepatotoxicity; acetaminophen

Categories

Funding

  1. NIEHS NIH HHS [2-R44-ES10514-02, N01-ES-95446] Funding Source: Medline

Ask authors/readers for more resources

This study tested the hypothesis that gene expression profiling can reveal indicators of subtle injury to the liver induced by a low dose of a substance that does not cause overt toxicity as defined by conventional criteria of toxicology (e.g., abnormal clinical chemistry and histopathology). For the purpose of this study we defined this low dose as subtoxic, i.e., a dose that elicits effects which are below the detection of conventional toxicological parameters. Acetaminophen (APAP) was selected as a model hepatotoxicant because (1) considerable information exists concerning the mechanism of APAP hepatotoxicity that can occur following high doses, (2) intoxication with APAP is the leading cause of emergency room visits involving acute liver failure within the United States, and (3) conventional clinical markers have poor predictive value. Rats treated with a single dose of 0, 50, 150, or 1500 mg/kg APAP were examined at 6, 24, or 48 h after exposure for conventional toxicological parameters and for gene expression alterations. Patterns of gene expression were found which indicated cellular energy loss as a consequence of APAP toxicity. Elements of these patterns were apparent even after exposure to subtoxic doses. With increasing dose, the magnitude of changes increased and additional members of the same biological pathways were differentially expressed. The energy loss suggested by gene expression changes was confirmed at the 1500 mg/kg dose exposure by measuring ATP levels. Only by ultrastructural examination could any indication of toxicity be identified after exposure to a subtoxic dose of APAP and that was occasional mitochondrial damage. In conclusion, this study provides evidence that supports the hypothesis that gene expression profiling may be a sensitive means of identifying indicators of potential adverse effects in the absence of the occurrence of overt toxicity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available