4.6 Article

Inflammation and cancer - IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpgi.00079.2004

Keywords

inflammatory bowel disease; colorectal cancer; colitis; oxidative stress; animal models

Ask authors/readers for more resources

Patients with ulcerative colitis and Crohn's disease are at increased risk for developing colorectal cancer. To date, no known genetic basis has been identified to explain colorectal cancer predisposition in these inflammatory bowel diseases. Instead, it is assumed that chronic inflammation is what causes cancer. This is supported by the fact that colon cancer risk increases with longer duration of colitis, greater anatomic extent of colitis, the concomitant presence of other inflammatory manifestations such as primary sclerosing cholangitis, and the fact that certain drugs used to treat inflammation, such as 5-aminosalicylates and steroids, may prevent the development of colorectal cancer. The major carcinogenic pathways that lead to sporadic colorectal cancer, namely chromosomal instability, microsatellite instability, and hypermethylation, also occur in colitis-associated colorectal cancers. Unlike normal colonic mucosa, however, inflamed colonic mucosa demonstrates abnormalities in these molecular pathways even before any histological evidence of dysplasia or cancer. Whereas the reasons for this are unknown, oxidative stress likely plays a role. Reactive oxygen and nitrogen species produced by inflammatory cells can interact with key genes involved in carcinogenic pathways such as p53, DNA mismatch repair genes, and even DNA base excision-repair genes. Other factors such as NF-kappaB and cyclooxygenases may also contribute. Administering agents that cause colitis in healthy rodents or genetically engineered cancer-prone mice accelerates the development of colorectal cancer. Mice genetically prone to inflammatory bowel disease also develop colorectal cancer especially in the presence of bacterial colonization. These observations offer compelling support for the role of inflammation in colon carcinogenesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available