4.7 Article Proceedings Paper

Fabrication and characterization of conductive anodic aluminum oxide substrates

Journal

APPLIED SURFACE SCIENCE
Volume 318, Issue -, Pages 290-296

Publisher

ELSEVIER
DOI: 10.1016/j.apsusc.2014.06.007

Keywords

Biomaterials Neural tissue engineering; Cues; Anodized aluminum oxide; Conductive surface; PVD

Funding

  1. Scientific and Technological Research Council of Turkey (Tubitak) [111M686]

Ask authors/readers for more resources

Biomaterials that allow the utilization of electrical, chemical and topographic cues for improved neuron-material interaction and neural regeneration hold great promise for nerve tissue engineering applications. The nature of anodic aluminum oxide (AAO) membranes intrinsically provides delicate control over topographic and chemical cues for enhanced cell interaction; however their use in nerve regeneration is still very limited. Herein, we report the fabrication and characterization of conductive AAO (CAAO) surfaces for the ultimate goal of integrating electrical cues for improved nerve tissue behavior on the nanoporous substrate material. Parafilm was used as a protecting polymer film, for the first time, in order to obtain large area (50 cm(2)) free-standing AAO membranes. Carbon (C) was then deposited on the AAO surface via sputtering. Morphological characterization of the CAA surfaces revealed that the pores remain open after the deposition process. The presence of C on the material surface and inside the nanopores was confirmed by XPS and EDX studies. Furthermore, I-V curves of the surface were used to extract surface resistance values and conductive AFM demonstrated that current signals can only be achieved where conductive C layer is present. Finally, novel nanoporous C films with controllable pore diameters and one dimensional (1-D) C nanostructures were obtained by the dissolution of the template AAO substrate. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available