4.7 Article

Roles of stromal cell RANKL, OPG, and M-CSF expression in biphasic TGF-β regulation of osteoclast differentiation

Journal

JOURNAL OF CELLULAR PHYSIOLOGY
Volume 200, Issue 1, Pages 99-106

Publisher

WILEY
DOI: 10.1002/jcp.20036

Keywords

-

Funding

  1. NIDCR NIH HHS [DE14680, R01 DE014680] Funding Source: Medline

Ask authors/readers for more resources

To better understand the complex roles of transforming growth factor-beta (TGF-beta) in bone metabolism, we examined the impact of a range of TGF-beta concentrations on osteoclast differentiation. In co-cultures of support cells and spleen or marrow osteoclast precursors, low TGF-beta concentrations stimulated while high concentrations inhibited differentiation. We investigated the influences of TGF-beta on macrophage colony stimulating factor (M-CSF), receptor activator of NF-kappaB ligand (RANKL), and osteoprotegerin (OPG) expression and found a dose dependent inhibition of M-CSF expression. RANKL expression was elevated at low TGF-beta concentrations with a less dramatic increase in OPG. Addition of OPG blocked differentiation at the stimulatory TGF-beta dose. Thus, low TGF-beta concentrations elevated the RANKL/OPG ratio while high concentrations did not, supporting that, at low TGF-beta concentrations, there is sufficient M-CSF and a high RANKL/OPG ratio to stimulate differentiation. At high TGF-beta concentrations, the RANKL/OPG ratio and M-CSF expression were both repressed and there was no differentiation. We examined whether TGF-beta-mediated repression of osteoclasts differentiation is due to these changes by adding M-CSF and/or RANKL and did not observe any impacton differentiation repression. We studied direct TGF-beta impacts on osteoclast precursors by culturing spleen or marrow cells with M-CSF and RANKL. TGF-beta treatment dose-dependently stimulated osteoclast differentiation. These data indicate that low TGF-beta levels stimulate osteoclast differentiation by impacting the RANKL/OPG ratio while high TGF-beta levels repress osteoclast differentiation by multiple avenues including mechanisms independent of the RANKL/OPG ratio or M-CSF expression regulation. (C) 2004 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available