4.7 Article

A gadolinium(III) complex of a carboxylic-phosphorus acid derivative of diethylenetriamine covalently bound to inulin, a potential macromolecular MRI contrast agent

Journal

BIOCONJUGATE CHEMISTRY
Volume 15, Issue 4, Pages 881-889

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bc049966g

Keywords

-

Ask authors/readers for more resources

A novel conjugate of a polysaccharide and a Gd(III) chelate with potential as contrast agent for magnetic resonance imaging (MRI) was synthesized. The structure of the chelate was derived from H(5)DTPA by replacing the central pendant arm by a phosphinic acid functional group, which was covalently bound to the polysaccharide inulin. On the average, each monosaccharide unit of the inulin was attached to approximately one (0.9) chelate moiety. The average molecular weight is 23110 and the average number of Gd3+ ions per molecule is 24. The ligand binds the Gd3+ ion in an octadentate fashion via three nitrogen atoms, four carboxylate oxygen atoms, and one P-O oxygen atom, and its first coordination sphere is completed by a water molecule. This compound shows promising properties for application as a contrast agent for MRI thanks to a favorable residence lifetime of this water molecule (170 ns at 298 K), a relatively long rotational correlation time (866 ps at 298 K), and the presence of two water molecules in the second coordination sphere of the Gd3+ ion. Furthermore, its stability toward transmetalation with Zn(II) is as high as that of the clinically used [Gd(DTPA)(H2O)](2-).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available