4.7 Article

Synthesis of hybrid Zn-Al-In mixed metal oxides/carbon nanotubes composite and enhanced visible-light-induced photocatalytic performance

Journal

APPLIED SURFACE SCIENCE
Volume 282, Issue -, Pages 937-946

Publisher

ELSEVIER
DOI: 10.1016/j.apsusc.2013.06.095

Keywords

Zn-Al-In mixed metal oxides; Carbon nanotubes; Nanocomposites; Photocatalytic; Visible light

Funding

  1. 973 Program [2011CBA00506]
  2. National Natural Science Foundation of China
  3. Program for Changjiang Scholars and Innovative Research Team in University [IRT1205]

Ask authors/readers for more resources

Hybrid nanocomposite of Zn-Al-In mixed metal oxides (ZnAlIn-MMO) and multi-walled carbon nanotubes (CNTs) was synthesized effectively from composite precursor of ternary Zn-Al-In layered double hydroxide (ZnAlIn-LDH) and 1-pyrenebutyric acid-modified CNTs (P-CNTs). The structural, morphological and optical properties of the materials were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), low temperature nitrogen adsorption-desorption, Raman spectra, and UV-vis diffuse reflectance spectroscopy. The results indicated that ZnAlIn-LDH nanoparticles could be attached closely onto the surface of the P-CNTs through the interfacial interaction, thus resulting in the formation of the remarkably dispersed ZnAlIn-MMO nanoparticles on the surface of the modified nanotubes after calcination. Compared with pristine ZnAlIn-MMO, as-synthesized hybrid ZnAlIn-MMO/P-CNTs had smaller band gap of about 2.08 eV, characteristic of enhanced visible light absorption. Furthermore, ZnAlIn-MMO/P-CNTs exhibited excellent visible-light-induced photodegradation activity toward methylene blue, which was attributable to the efficient separation and transportation of the photogenerated charge carriers originating from the unique heterostructure of such nanocomposite. The present finding provides an approach to fabricate new types of visible-light-induced heteronanostructured photocatalysts. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available