4.7 Article

Quantitative evaluation of image-based distortion correction in diffusion tensor imaging

Journal

IEEE TRANSACTIONS ON MEDICAL IMAGING
Volume 23, Issue 7, Pages 789-798

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TMI.2004.827479

Keywords

consistency testing; diffusion tensor imaging; diffusion-weighted imaging; distortion correction; eddy currents; image registration; MRI; mutual information; local correlation; quantitative evaluation; validation

Ask authors/readers for more resources

A statistical method for the evaluation of image registration for a series of images based on the assessment of consistency properties of the registration results is proposed. Consistency is defined as the residual error of the composition of cyclic registrations. By combining the transformations of different algorithms the consistency error allows a quantitative comparison without the use of ground truth, specifically, it allows a determination as to whether the algorithms are compatible and hence provide comparable registrations. Consistency testing is applied to evaluate retrospective correction of eddy current-induced image distortion in diffusion tensor imaging of the brain. In the literature several image transformations and similarity measures have been proposed, generally showing a significant reduction of distortion in side-by-side comparison of parametric maps before and after registration. Transformations derived from imaging physics and a three-dimensional affine transformation as well as mutual information (MI) and local correlation (LC) similarity are compared to each other by means of consistency testing. The dedicated transformations could not demonstrate a significant difference for more than half of the series considered. LC similarity is well-suited for distortion correction providing more consistent registrations which are comparable to MI.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available