4.7 Article

Controllable atomic layer deposition of one-dimensional nanotubular TiO2

Journal

APPLIED SURFACE SCIENCE
Volume 266, Issue -, Pages 132-140

Publisher

ELSEVIER
DOI: 10.1016/j.apsusc.2012.11.116

Keywords

Atomic layer deposition; Titanium oxide; Nanotubes; Anodic aluminum oxide; Carbon nanotubes

Funding

  1. Natural Science and Engineering Research Council of Canada (NSERC)
  2. Canada Research Chair (CRC) Program
  3. Canadian Foundation for Innovation (CFI)
  4. Ontario Research Fund (ORF)
  5. Early Researcher Award (ERA)
  6. University of Western Ontario

Ask authors/readers for more resources

This study aimed at synthesizing one-dimensional (1D) nanostructures of TiO2 using atomic layer deposition (ALD) on anodic aluminum oxide (AAO) templates and carbon nanotubes (CNTs). The precursors used are titanium tetraisopropoxide (TTIP, Ti(OCH(CH3)(2))(4)) and deionized water. It was found that the morphologies and structural phases of as-deposited TiO2 are controllable through adjusting cycling numbers of ALD and growth temperatures. Commonly, a low temperature (150 degrees C) produced amorphous TiO2 while a high temperature (250 degrees C) led to crystalline anatase TiO2 on both AAO and CNTs. In addition, it was revealed that the deposition of TiO2 is also subject to the influences of the applied substrates. The work well demonstrated that ALD is a precise route to synthesize 1D nanostructures of TiO2. The resultant nanostructured TiO2 can be important candidates in many applications, such as water splitting, solar cells, lithium-ion batteries, and gas sensors. (c) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available