4.5 Article

Geometric tailoring: A design for manufacturing method for rapid prototyping and rapid tooling

Journal

JOURNAL OF MECHANICAL DESIGN
Volume 126, Issue 4, Pages 571-580

Publisher

ASME
DOI: 10.1115/1.1758250

Keywords

-

Ask authors/readers for more resources

The goal of fabricating functional prototypes quickly is hindered by a mismatch of material properties between production materials and those used in rapid prototyping (RP) machines, such as stereolithography. Even when rapid tooling (RT) technologies are utilized for injection molded parts, differences in mold materials cause differences in molded part properties. To compensate for these material and process differences, a design for manufacturing (DFM) method is introduced, called geometric tailoring. The idea is to modify dimensions of prototype parts to match key characteristics of production parts, such as stress and deflection behaviors. For RP parts, the geometric tailoring DFM method integrates two sub-problems, one for achieving functional requirements by matching part behaviors, and one for RP process planning to incorporate manufacturing capabilities and limitations. For parts fabricated by RT an additional sub-problem is integrated, namely injection molding process planning. Problem decomposition is critical due to the coupled nature of the sub-problems. A problem decomposition and solution procedure is presented. The geometric tailoring method is shown to enable the matching of prototype to production part behaviors, while improving manufacturability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available