4.5 Article

Intestinal Na-Pi cotransporter adaptation to dietary Pi content in vitamin D receptor null mice

Journal

AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY
Volume 287, Issue 1, Pages F39-F47

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajprenal.00375.2003

Keywords

dietary phosphate; phosphate transport; intestine

Ask authors/readers for more resources

Recent studies suggest that vitamin D may play a role in intestinal Na(+)-dependent phosphate transport adaptation to variable levels of dietary Pi. Therefore, the goal of the current study was to assess Na(+)-dependent P(i) cotransport activity in transgenic mice to determine whether vitamin D is an essential mediator of this process. Intestinal brush-border membrane (BBM), Na(+)-dependent P(i) cotransport activity was significantly decreased in vitamin D receptor (VDR) null [VDR (-/-)] mice compared with wild-type (VDR+/+) mice. While intestinal Na-P(i) cotransporter (type IIb) mRNA levels were similar in VDR (-/-) and VDR (+/+) mice, type IIb Na-P(i) cotransporter protein expression was markedly suppressed in VDR (-/-) mice compared with VDR (+/+) mice. Furthermore, Na-P(i) cotransport activity in renal BBM was similar in VDR (-/-) and VDR (+/+) mice, but type IIa Na-P(i) cotransporter protein expression was decreased in VDR (-/-) mice. After administration of a low-P(i) diet, type IIb protein expression was significantly increased in VDR (+/+) and VDR (-/-) mice, and type IIb protein expression was present in the intestinal BBM of VDR (-/-) mice. These data demonstrate that intestinal Na-P(i) cotransport adaptation to a low-P(i) diet occurs independently of vitamin D.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available