4.7 Article

Immunolocalization of the proton-coupled oligopeptide transporter PEPT2 in developing rat brain

Journal

MOLECULAR PHARMACEUTICS
Volume 1, Issue 4, Pages 248-256

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/mp049944b

Keywords

PEPT2; choroid plexus; neurons; astrocytes; brain; localization; development

Funding

  1. NHLBI NIH HHS [P01 HL018575] Funding Source: Medline
  2. NIGMS NIH HHS [R01 GM035498] Funding Source: Medline
  3. NINDS NIH HHS [R01 NS034709] Funding Source: Medline

Ask authors/readers for more resources

This study examined the tissue distribution, cellular localization, and developmental expression of the PEPT2 protein in rat brain. Immunoblot and immunocytochemistry analyses were performed with specific rat PEPT1 and PEPT2 antisera. developed in our laboratory. Rats were examined from fetus (gestation for 17 days) to adult (day 75). On immunoblot analysis, the PEPT2 protein was detected in cerebral cortex, olfactory bulb, basal ganglia, cerebellum, and hindbrain sections of adult brain, with the strongest signals in cerebral cortex. No PEPT1 protein was found in brain. Expression levels of the PEPT2 protein in cerebral cortex were maximal in the fetus and declined rapidly with advancing age. Adult protein levels were approximately 14% of that observed in fetus. In immunofluorescence experiments, the strongest PEPT2 signals were observed in epithelial cells of the choroid plexus for both adult and neonate brains. The PEPT2 protein was exclusively expressed on the apical membrane (CSF-facing) of choroid plexus epithelia. In double labeling experiments, PEPT2 immunoreactivity in adult brain colocalized with NeuN, a neuronal marker, but not with GFAP, an astrocyte marker. In contrast, in neonatal brain, PEPT2 immunoreactivity colocalized with both GFAP and NeuN. These findings demonstrate that the PEPT2 protein is found throughout the brain. The apical expression of PEPT2 in choroid plexus suggests that it is involved in the export of neuropeptides, peptide fragments, and peptide-like drugs from cerebrospinal fluid. PEPT2 may also play a role in the regulation of neuropeptide concentrations in extracellular fluid, especially during early development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available