4.7 Article

Inhibition of glycolipid biosynthesis by N-(5-adamantane-1-yl-methoxy-pentyl)-deoxynojirimycin protects against the inflammatory response in hapten-induced colitis

Journal

INTERNATIONAL IMMUNOPHARMACOLOGY
Volume 4, Issue 7, Pages 939-951

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.intimp.2004.04.008

Keywords

colitis; glycolipids; TNBS; oxazolone

Ask authors/readers for more resources

Since glycolipid biosynthesis is potentially involved in immunological and inflammatory responses, we tested the effect of a novel inhibitor of intracellular glycolipid biosynthesis N-(5-adamantane-1-yl-methoxy-pentyl)-deoxynojirimycin (AMP-DNM) in two hapten-induced colitis models: trinitrobenzene sulphonic acid (TNBS)- and oxazolone (4-ethoxymethylene-2phenyl-2-oxazoline-5-one; Oxa)-induced colitis. AMP-DNM was given either by intraperitoneal injection or orally via the diet. Mice treated with AMP-DNM had less severe colitis and a more rapid weight recovery, less edema and less wall thickness. Cellular infiltration, goblet cell loss and myeloperoxidase (MPO) activity were reduced in colons of AMP-DNM-treated animals. Intralesional IFN-gamma and IL-18 production were lower in mice of the AMP-DNM-treated groups. Furthermore, AMP-DNM treatment reduced the serum anti-TNBS and anti-Oxa antibody levels. Our findings show that the glycolipid biosynthesis inhibitor AMP-DNM has a strong anti-inflammatory and immune suppressive activity on both TNBS- and Oxa-induced colitis. The data also provide evidence that glycolipid biosynthesis is involved in the inflammatory cascade in these inflammatory bowel disease (IBD) models. (C) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available