4.4 Article

Genomic DNA microarray analysis:: Identification of new genes regulated by light color in the cyanobacterium Fremyella diplosiphon

Journal

JOURNAL OF BACTERIOLOGY
Volume 186, Issue 13, Pages 4338-4349

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.186.13.4338-4349.2004

Keywords

-

Categories

Ask authors/readers for more resources

Many cyanobacteria use complementary chromatic adaptation to efficiently utilize energy from both green and red regions of the light spectrum during photosynthesis. Although previous studies have shown that acclimation to changing light wavelengths involves many physiological responses, research to date has focused primarily on the expression and regulation of genes that encode proteins of the major photosynthetic light-harvesting antennae, the phycobilisomes. We have used two-dimensional gel electrophoresis and genomic DNA microarrays to expand our understanding of the physiology of acclimation to light color in the cyanobacterium Fremyella diplosiphon. We found that the levels of nearly 80 proteins are altered in cells growing in green versus red light and have cloned and positively identified 17 genes not previously known to be regulated by light color in any species. Among these are homologs of genes present in many bacteria that encode well-studied proteins lacking clearly defined functions, such as tspO, which encodes a tryptophan-rich sensory protein, and homologs of genes encoding proteins of clearly defined function in many species, such as nblA and chIL, encoding phycobilisome degradation and chlorophyll biosynthesis proteins, respectively. Our results suggest novel roles for several of these gene products and highly specialized, unique uses for others.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available