4.5 Article Proceedings Paper

The implications of groundwater velocity variations on microbial transport and wellhead protection - review of field evidence

Journal

FEMS MICROBIOLOGY ECOLOGY
Volume 49, Issue 1, Pages 17-26

Publisher

OXFORD UNIV PRESS
DOI: 10.1016/j.femsec.2004.02.018

Keywords

bacteria; viruses; groundwater; transport; tracers; protection

Categories

Ask authors/readers for more resources

Current strategies to protect groundwater sources from microbial contamination (e.g., wellhead protection areas) rely upon natural attenuation of microorganisms between wells or springs and potential sources of contamination and are determined using average (macroscopic) groundwater flow velocities defined by Darcy's Law. However, field studies of sewage contamination and microbial transport using deliberately applied tracers provide evidence of groundwater flow paths that permit the transport of microorganisms by rapid, statistically extreme velocities. These paths can be detected because of (i) the high concentrations of bacteria and viruses that enter near-surface environments in sewage or are deliberately applied as tracers (e.g., bacteriophage); and (ii) low detection limits of these microorganisms in water. Such paths must comprise linked microscopic pathways (sub-paths) that are biased toward high groundwater velocities. In media where microorganisms may be excluded from the matrix (pores and fissures), the disparity between the average linear velocity of groundwater flow and flow velocities transporting released or applied microorganisms is intensified. It is critical to recognise the limited protection afforded by source protection measures that disregard rapid, statistically extreme groundwater velocities transporting pathogenic microorganisms, particularly in areas dependent upon untreated groundwater supplies. (C) 2004 Published by Elsevier B.V. on behalf of the Federation of European Microbiological Societies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available