4.6 Article

Possible involvement of the α1 isoform of 5′ AMP-activated protein kinase in oxidative stress-stimulated glucose transport in skeletal muscle

Journal

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpendo.00487.2003

Keywords

contraction; epitrochlearis muscle; hydrogen peroxide; hypoxanthine; xanthine oxidase

Ask authors/readers for more resources

Recent studies have suggested that 5' AMP-activated protein kinase (AMPK) is activated in response to metabolic stresses, such as contraction, hypoxia, and the inhibition of oxidative phosphorylation, which leads to insulin-independent glucose transport in skeletal muscle. In the present study, we hypothesized that acute oxidative stress increases the rate of glucose transport via an AMPK-mediated mechanism. When rat epitrochlearis muscles were isolated and incubated in vitro in Krebs buffer containing the oxidative agent H2O2, AMPKalpha1 activity increased in a time- and dose-dependent manner, whereas AMPKalpha2 activity remained unchanged. The activation of AMPKalpha1 was associated with phosphorylation of AMPK Thr(172), suggesting that an upstream kinase is involved in the activation process. H2O2-induced AMPKalpha1 activation was blocked in the presence of the antioxidant N-acetyl-L-cysteine (NAC), and H2O2 significantly increased the ratio of oxidized glutathione to glutathione (GSSG/GSH) concentrations, a sensitive marker of oxidative stress. H2O2 did not cause an increase in the conventional parameters of AMPK activation, such as AMP and AMP/ATP. H2O2 increased 3-O-methyl-D-glucose transport, and this increase was partially, but significantly, blocked in the presence of NAC. Results were similar when the muscles were incubated in a superoxide-generating system using hypoxanthine and xanthine oxidase. Taken together, our data suggest that acute oxidative stress activates AMPKalpha1 in skeletal muscle via an AMP-independent mechanism and leads to an increase in the rate of glucose transport, at least in part, via an AMPKalpha1-mediated mechanism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available