4.7 Article

Numerical prediction of heat affected layer in the EDM of aeronautical alloys

Journal

APPLIED SURFACE SCIENCE
Volume 259, Issue -, Pages 780-790

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2012.07.124

Keywords

Aeronautical alloys; EDM; Recast layer; Thermal modeling

Funding

  1. Basque Department of Industry through the Research Project 'Profuture' (ETORTEK)
  2. ONA Electroerosion S.A.

Ask authors/readers for more resources

Electrical discharge machining is a popular non-traditional machining process, optimum for accurate machining of complex geometries in hard materials. EDM has been used for decades for machining pieces for the aeronautical industry, but surface integrity, and consequently the reliability of the machined parts have been questioned for long time due to the thermal nature of this machining process. In recent years, efforts have been put on modeling of the EDM process, being thermal modeling of the process one promising alternative. In a previous publication an original model of the EDM process was presented and it was used to predict material removal rate and surface finish for the EDM of steel. In the present article the capability of that modeling tool to characterize discharge properties and to predict recast layer distribution when EDMing an aeronautical alloy will be analyzed. EDM process of Inconel 718 has been studied and discharge properties have been obtained for four different EDM regimes. The capability of the model to reflect the behavior of more energetic regimes is discussed. Gathered information has been used to simulate the evolution of the recast layer generation process. Obtained results have been validated comparing them with experimental measurements, revealing a good correlation between predictions and experimental data. Finally, energetic efficiency of the discharge process has been simulated for the adjusted EDM regimes. (C) 2012 Elsevier B. V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available