4.5 Article

Fibroblast growth factor 2 endocytosis in endothelial cells proceed via syndecan-4-dependent activation of Rac1 and a Cdc42-dependent macropinocytic pathway

Journal

JOURNAL OF CELL SCIENCE
Volume 117, Issue 15, Pages 3189-3199

Publisher

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jcs.01190

Keywords

Rac1; macropinocytosis; heparan sulfate; growth factors; signaling

Categories

Funding

  1. NHLBI NIH HHS [R01 HL065418-03, R01 HL065418-01A1, R01 HL065418, R01 HL065418-02, HL65418, HL63609, HL62289, HL53793] Funding Source: Medline

Ask authors/readers for more resources

Full activity of fibroblast growth factors (FGFs) requires their internalization in addition to the interaction with cell surface receptors. Recent studies have suggested that the transmembrane proteoglycan syndecan-4 functions as a FGF2 receptor. In this study we investigated the molecular basis of syndecan endocytosis and its role in FGF2 internalization in endothelial cells. We found that syndecan-4 uptake, induced either by treatment with FGF2 or by antibody clustering, requires the integrity of plasma membrane lipid rafts for its initiation, occurs in a non-clathrin-, non-dynamin-dependent manner and involves Rac1, which is activated by syndecan-4 clustering. FGF2 was internalized in a complex with syndecan-4 in 70 kDa dextran-containing endocytic vesicles. FGF2 and syndecan-4 but not dextran endocytosis were blocked by the dominant negative Rac1 while amiloride and the dominant-negative Cdc42 blocked internalization of dextran in addition to FGF2 and syndecan-4. Taken together, these results demonstrate that FGF2 endocytosis requires syndecan-4 clustering-dependent activation of Rac1 and the intact CDC42-dependent macropinocytic pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available