4.5 Article

Electrostatically-directed self-assembly of cylindrical peptide amphiphile nanostructures

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 108, Issue 26, Pages 8817-8822

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp037731g

Keywords

-

Ask authors/readers for more resources

We present theoretical studies of peptide amphiphile nanostructures created by Stupp and co-workers [Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Science 2001, 294, 1684] and show that these amphiphiles exhibit attractive electrostatic interactions between their hydrophilic headgroups. These interactions prevail in their competition with the hydrophobic attraction between the arnphiphile tails for the shape of the self-assembly, leading to cylindrical micelles of nanoscale dimension. The theory is supported by Monte Carlo simulations which show that in the absence of the directional electrostatic interactions between the headgroups the amphiphiles self-assemble into spherical micelles, in accord with our recent formal calculations [Tsonchev, S.; Schatz, G. C.; Ratner, M. A. Nano Lett. 2003, 3, 623], whereas inclusion of the electrostatic interactions leads to cylindrical nanostructures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available