4.8 Article

Guided cell patterning on gold-silicon dioxide substrates by surface molecular engineering

Journal

BIOMATERIALS
Volume 25, Issue 16, Pages 3315-3324

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2003.10.014

Keywords

molecular surface engineering; surface modification; cell patterning; biosensing

Funding

  1. NIBIB NIH HHS [EB-002027] Funding Source: Medline

Ask authors/readers for more resources

We report an effective approach to patterning cells on gold-silicon dioxide substrates with high precision, selectivity, stability, and reproducibility. This technique is based on photolithography and surface molecular engineering and requires no cell positioning or delivery devices, thus significantly reducing the potential damage to cells. The cell patterning was achieved by activating the gold regions of the substrate with functionalized thiols that covalently bind proteins onto the gold regions to guide subsequent cell adhesion while passivating the silicon dioxide background with polyethylene glycol to resist cell adhesion. Fourier transform infrared reflectance spectroscopy verified the successful immobilization of proteins on gold surfaces. Protein patterns were visualized by tagging proteins with Rhodamine fluorescent probes. Time-of-flight secondary ion mass spectrometry was used to characterize the chemistry of both the cell-adhesive and cell-resistant regions of surfaces after each key chemical reaction occurring during the molecular surface engineering. The ability of the engineered surfaces to guide cell adhesion was illustrated by differential interference contrast (DIC) reflectance microscopy. The cell patterning technique introduced in this study is compatible with micro- and photo-electronics. and may have many medical, environmental, and defense applications. (C) 2003 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available