4.7 Article

Cell-specific role for ε- and βI-protein kinase C isozymes in protecting cortical neurons and astrocytes from ischemia-like injury

Journal

NEUROPHARMACOLOGY
Volume 47, Issue 1, Pages 136-145

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuropharm.2004.03.009

Keywords

cPKC; beta IPKC; primary culture; neuron; astrocyte; stroke

Funding

  1. NINDS NIH HHS [NS37520, NS 044350] Funding Source: Medline

Ask authors/readers for more resources

Activation of epsilon protein kinase C (epsilonPKC) has been shown to protect cardiac myocytes against ischemia and reperfusion injury. However, the role of PKC in ischemic brain injury is less well defined. Western blot analysis of murine neurons and astrocytes in primary Culture demonstrated epsilon- and betaIPKC expression in both cell types. Activation of epsilonPKC increased in neuronal cultures in response to the ischemia-like insult of oxygen-glucose deprivation (OGD). Isozyme-specific peptide activators or inhibitors of PKC were applied at various times before, during and after the OGD period. Neuron-astrocyte mixed cultures pretreated with a selective epsilonPKC activator peptide showed a significant reduction in neuronal injury after OGD and reperfusion, compared to cultures pretreated with control peptide. The epsilonPKC activator peptide counteracted the increased damage induced by pretreatment with the epsilonPKC-selective inhibitor peptide in relatively pure neuronal cultures subjected to OGD. Neither epsilonPKC activator nor inhibitor peptides affected injury of neurons when applied after OGD onset. In contrast, the betaIPKC-selective inhibitor peptide increased injury in astrocyte Cultures exposed to OGD at all application times tested. Our data demonstrate protection of neurons by selective activation of epsilonPKC but enhanced astrocyte cell death with selective inhibition of betaIPKC. Thus PKC isozymes exhibit cell type-specific effects on ischemia-like injury. (C) 2004 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available