4.7 Article

Photocatalytic degradation of gaseous toluene on Fe-TiO2 under visible light irradiation: A study on the structure, activity and deactivation mechanism

Journal

APPLIED SURFACE SCIENCE
Volume 258, Issue 12, Pages 5031-5037

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2012.01.075

Keywords

Photocatalysis; Fe-TiO2; DRIFTS; Gaseous toluene; Visible light

Funding

  1. National Nature Science Foundation of China [51021091, 20903084]
  2. Anhui Provincial Natural Science Foundation [090416226]
  3. China Postdoctoral Science Foundation [2011M501062]

Ask authors/readers for more resources

The Fe-TiO2 photocatalysts synthesized by a sol-gel method have the mesoporous structure with a narrow pore size distribution, large pore volume and high surface area. The incorporated Fe3+ substitutes the octahedrally coordinated Ti4+ in the TiO2 lattice to extend the absorption of TiO2 to visible light region and promote the formation of electron-hole pair. Additionally, the separation and transportation efficiency increase with the doping of Fe3+ increasing from 0.1% to 0.7%, while decreases remarkably with the doping concentration increasing from 0.7% to 1.5%. The Fe-TiO2 shows excellent photocatalytic performance for toluene degradation under visible light irradiation. The optimal Fe/Ti ratio is 0.7%. Partial deactivation of the photocatalytic activity was observed after 20 consecutive reaction runs. From the in situ DRIFTS experiment, the deactivation reason can be attributed to the formation of stable intermediates, such as benzaldehyde and benzoic acid, which occupied the active sites on the surface of the photocatalyst. The adsorbed benzaldehyde and benzoic acid can be removed with heat treatment at 653 K for 3 h and the deactivated photocatalyst can be regenerated completely. (C) 2012 Elsevier B. V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available