4.6 Article

The potassium channel Kir4.1 associates with the dystrophin-glycoprotein complex via α-syntrophin in glia

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 279, Issue 27, Pages 28387-28392

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M402604200

Keywords

-

Funding

  1. NEI NIH HHS [EY 07133, EY 12949-01] Funding Source: Medline
  2. NINDS NIH HHS [NS 33145] Funding Source: Medline

Ask authors/readers for more resources

One of the major physiological roles of potassium channels in glial cells is to promote potassium spatial buffering in the central nervous system, a process necessary to maintain an optimal potassium concentration in the extracellular environment. This process requires the precise distribution of potassium channels accumulated at high density in discrete subdomains of glial cell membranes. To obtain a better understanding of how glial cells selectively target potassium channels to discrete membrane subdomains, we addressed the question of whether the glial inwardly rectifying potassium channel Kir4.1 associates with the dystrophin-glycoprotein complex (DGC). Immunoprecipitation experiments revealed that Kir4.1 is associated with the DGC in mouse brain and cultured cortical astrocytes. In vitro immunoprecipitation and pull-down assays demonstrated that Kir4.1 can bind directly to alpha-syntrophin, requiring the presence of the last three amino acids of the channel (SNV), a consensus PDZ domain-binding motif. Furthermore, Kir4.1 failed to associate with the DGC in brains from alpha-syntrophin knockout mice. These results suggest that Kir4.1 is localized in glial cells by its association with the DGC through a PDZ domain-mediated interaction with alpha-syntrophin and suggest an important role for the DGC in central nervous system physiology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available