4.7 Article

Designing N-halamine based antibacterial surface on polymers: Fabrication, characterization, and biocidal functions

Journal

APPLIED SURFACE SCIENCE
Volume 257, Issue 14, Pages 6034-6039

Publisher

ELSEVIER
DOI: 10.1016/j.apsusc.2011.01.115

Keywords

Surface functionalization; Antibacterial polymer surfaces; N-halamine; Spin coating

Funding

  1. Shandong University of Science and Technology [06540040711]
  2. SRF for ROCS, SEM

Ask authors/readers for more resources

We demonstrate a valuable method to generate reactive groups on inert polymer surfaces and bond antibacterial agents for biocidal ability. Polystyrene (PS) surfaces were functionalized by spin coating of sub-monolayer and monolayer films of poly(styrene-b-tert-butyl acrylate) (PS-PtBA) block copolymer from solutions in toluene. PS-PtBA self-assembled to a bilayer structure on PS that contains a surface layer of the PtBA blocks ordering at the air-polymer interface and a bottom layer of the PS blocks entangling with the PS substrate. The thickness of PtBA layer could be linearly controlled by the concentration of the spin coating solution and a 2.5nm saturated monolayer coverage of PtBA was achieved at 0.35% (w/w). Carboxyl groups were generated by exposing the tert-butyl ester groups of PtBA on saturated surface to trifluoroacetic acid (TFA) to bond tert-butylamine via amide bonds that were further chlorinated to N-halamine with NaOCl solution. The density of N-halamine on the chlorinated surface was calculated to be 1.05x10(-5) mol/m(2) by iodimetric/thiosulfate titration. Presented data showed the N-halamine surface provided powerful antibacterial activities against Staphylococcus aureus and Escherichia coli. Over 50% of the chlorine lost after UVA irradiation could be regained upon rechlorination. This design concept can be virtually applied to any inert polymer by choosing appropriate block copolymers and antibacterial agents to attain desirable biocidal activity. (C) 2011 Elsevier B. V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available