4.6 Article

Combinatorial complexity of 5′ alternative acetylcholinesterase transcripts and protein products

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 279, Issue 28, Pages 29740-29751

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M402752200

Keywords

-

Ask authors/readers for more resources

To explore the scope and significance of alternate promoter usage and its putative inter-relationship to alternative splicing, we searched expression sequence tags for the 5' region of acetylcholinesterase ( ACHE) genes. Three and five novel first exons were identified in human and mouse ACHE genes, respectively. Reverse transcription-PCR and in situ hybridization validated most of the predicted transcripts, and sequence analyses of the corresponding genomic DNA regions suggest evolutionarily conserved promoters for each of the novel exons identified. Distinct tissue specificity and stress-related expression patterns of these exons predict combinatorial complexity with known 3' alternative AChE mRNA transcripts. Unexpectedly one of the 5' exons encodes an extended N terminus in-frame with the known AChE sequence, extending the increased complexity to the protein level. The resultant membrane variant(s), designated N-AChE, is developmentally regulated in human brain neurons and blood mononuclear cells. Alternative promoter usage combined with alternative splicing may thus lead to stress-dependent combinatorial complexity of AChE mRNA transcripts and their protein products.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available