4.6 Article

The heme synthesis defect of mutants impaired in mitochondrial iron-sulfur protein biogenesis is caused by reversible inhibition of ferrochelatase

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 279, Issue 28, Pages 29101-29108

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M403721200

Keywords

-

Ask authors/readers for more resources

Mitochondria are responsible for the synthesis of both iron-sulfur clusters and heme, but the potential connection between the two major iron-consuming pathways is unknown. Here, we have shown that mutants in the yeast mitochondrial iron-sulfur cluster (ISC) assembly machinery displayed reduced cytochrome levels and diminished activity of the heme-containing cytochrome c oxidase, in addition to iron-sulfur protein defects. In contrast, mutants in components of the mitochondrial ISC export machinery, which are specifically required for maturation of cytosolic iron-sulfur proteins, were not decreased in heme synthesis or cytochrome levels. Heme synthesis does not involve the function of mitochondrial ISC components, because immunological depletion of various ISC proteins from mitochondrial extracts did not affect the formation and amounts of heme. The heme synthesis defects of ISC mutants were found in vivo in isolated mitochondria and in mitochondrial detergent extracts and were confined to an inhibition of ferrochelatase, the enzyme catalyzing the insertion of iron into protoporphyrin IX. In support of these findings, immunopurification of ferrochelatase from ISC mutants restored its activity to wild-type levels. We conclude that the reversible inhibition of ferrochelatase is the molecular reason for the heme deficiency in ISC assembly mutants. This inhibitory mechanism may be used for regulation of iron distribution between the two iron-consuming processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available