4.6 Article

The major vault protein is a novel substrate for the tyrosine phosphatase SHP-2 and scaffold protein in epidermal growth factor signaling

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 279, Issue 28, Pages 29374-29385

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M313955200

Keywords

-

Funding

  1. NCI NIH HHS [T32-CA09085] Funding Source: Medline
  2. NIAMS NIH HHS [R01-AR46504] Funding Source: Medline

Ask authors/readers for more resources

The catalytic activity of the Src homology 2 (SH2) domain-containing tyrosine phosphatase, SHP-2, is required for virtually all of its signaling effects. Elucidating the molecular mechanisms of SHP-2 signaling, therefore, rests upon the identification of its target substrates. In this report, we have used SHP-2 substrate-trapping mutants to identify the major vault protein (MVP) as a putative SHP-2 substrate. MVP is the predominant component of vaults that are cytoplasmic ribonucleoprotein complexes of unknown function. We show that MVP is dephosphorylated by SHP-2 in vitro and it forms an enzyme-substrate complex with SHP-2 in vivo. In response to epidermal growth factor (EGF), SHP-2 associates via its SH2 domains with tyrosyl-phosphorylated MVP. MVP also interacts with the activated form of the extracellular-regulated kinases (Erks) in response to EGF and a constitutive complex between tyrosyl-phosphorylated MVP, SHP-2, and the Erks was detected in MCF-7 breast cancer cells. Using MVP-deficient fibroblasts, we demonstrate that MVP cooperates with Ras for optimal EGF-induced Elk-1 activation and is required for cell survival. We propose that MVP functions as a novel scaffold protein for both SHP-2 and Erk. The regulation of MVP tyrosyl phosphorylation by SHP-2 may play an important role in cell survival signaling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available