4.6 Article

Hyaluronan-CD44 interaction with Rac1-dependent protein kinase N-γ promotes phospholipase Cγ1 activation, Ca2+ signaling, and cortactin-cytoskeleton function leading to keratinocyte adhesion and differentiation

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 279, Issue 28, Pages 29654-29669

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M403608200

Keywords

-

Funding

  1. NCI NIH HHS [R01 CA66163, R01 CA 78633] Funding Source: Medline
  2. NIAMS NIH HHS [P01 AR39448] Funding Source: Medline

Ask authors/readers for more resources

In this study we have investigated hyaluronan (HA)-CD44 interaction with protein kinase N-gamma (PKNgamma), a small GTPase (Rac1)-activated serine/threonine kinase in human keratinocytes. By using a variety of biochemical and molecular biological techniques, we have determined that CD44 and PKNgamma kinase ( molecular mass similar to 120 kDa) are physically linked in vivo. The binding of HA to keratinocytes promotes PKNgamma kinase recruitment into a complex with CD44 and subsequently stimulates Rac1-mediated PKNgamma kinase activity. The Rac1-activated PKNgamma in turn increases threonine ( but not serine) phosphorylation of phospholipase C ( PLC) gamma1 and upregulates PLCgamma1 activity leading to the onset of intracellular Ca2+ mobilization. HA/CD44-activated Rac1-PKNgamma also phosphorylates the cytoskeletal protein, cortactin, at serine/threonine residues. The phosphorylation of cortactin by Rac1-PKNgamma attenuates its ability to cross-link filamentous actin in vitro. Further analyses indicate that the N-terminal antiparallel coiled-coil (ACC) domains of PKNgamma interact directly with Rac1 in a GTP-dependent manner. The binding of HA to CD44 induces PKNgamma association with endogenous Rac1 and its activity in keratinocytes. Transfection of keratinocytes with PKNgamma-ACCcDNA reduces HA-mediated recruitment of endogenous Rac1 to PKNgamma and blocks PKNgamma activity. These findings suggest that the PKNgamma-ACC fragment acts as a potent competitive inhibitor of endogenous Rac1 binding to PKNgamma in vivo. Most important, the PKNgamma-ACC fragment functions as a strong dominant-negative mutant that effectively inhibits HA/CD44-mediated PKNgamma phosphorylation of PLCgamma1 and cortactin as well as keratinocyte signaling ( e g. Ca2+ mobilization and cortactin-actin binding) and cellular functioning (e.g. cell-cell adhesion and differentiation). Taken together, these findings strongly suggest that hyaluronan-CD44 interaction with Rac1-PKNgamma plays a pivotal role in PLCgamma1-regulated Ca2+ signaling and cortactin-cytoskeleton function required for keratinocyte cell-cell adhesion and differentiation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available