4.7 Article

The absence of crystalline silicates in the diffuse interstellar medium

Journal

ASTROPHYSICAL JOURNAL
Volume 609, Issue 2, Pages 826-837

Publisher

IOP PUBLISHING LTD
DOI: 10.1086/421339

Keywords

astrochemistry; cosmic rays; dust, extinction; Galaxy : center; infrared : ISM; ISM : lines and bands

Ask authors/readers for more resources

Infrared spectroscopy provides a direct handle on the composition and structure of interstellar dust. We have studied the dust along the line of sight toward the Galactic center using Short Wavelength Spectrometer data obtained with the Infrared Space Observatory (ISO). We focused on the wavelength region from 8 to 13 mum, which is dominated by the strong silicate absorption feature. Using the absorption profiles observed toward Galactic center sources 3 and 4, which are C-rich Wolf-Rayet Stars, as reference objects, we are able to disentangle the interstellar silicate absorption and the silicate emission intrinsic to the source, toward Sgr A* and derive a very accurate profile for the intrinsic 9.7 mum band. The interstellar absorption band is smooth and featureless and is well reproduced using a mixture of 15.1% amorphous pyroxene and 84.9% of amorphous olivine by mass, all in spherical submicron-sized grains. There is no direct evidence for substructure due to interstellar crystalline silicates. By minimizing chi(2) of spectral fits to the absorption feature, we are able to determine an upper limit to the degree of crystallinity of silicates in the diffuse interstellar medium ( ISM) and conclude that the crystalline fraction of the interstellar silicates is 0.2% +/- 0.2% by mass. This is much lower than the degree of crystallinity observed in silicates in the circumstellar environment of evolved stars, the main contributors of dust to the ISM. There are two possible explanations for this discrepancy. First, an amorphization process occurs in the ISM on a timescale significantly shorter than the destruction timescale, possibly caused by particle bombardment by heavyweight ions. Second, we consider the possibility that the crystalline silicates in stellar ejecta are diluted by an additional source of amorphous silicates, in particular supernovae. We also compare our results with a study on silicate presolar grains found in interplanetary dust particles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available