4.7 Article

Thermo-physical and impact properties of epoxy nanocomposites reinforced by single-wall carbon nanotubes

Journal

POLYMER
Volume 45, Issue 15, Pages 5163-5170

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.polymer.2004.05.036

Keywords

dispersion; sonication; single-wall carbon nanotubes

Ask authors/readers for more resources

The thermo-physical properties and the impact strength of diglycidyl ether of bisphenol F (DGEBF) epoxy nanocomposites reinforced with fluorinated single-wall carbon nanotubes (FSWCNT) are reported. A sonication technique was used to disperse FSWCNT in the glassy epoxy network resulting in nanocomposites having large improvement in modulus with extremely small amount of FSWCNT. The glass transition temperature decreased approximately 30degreesC with an addition of 0.2 wt% (0.14 vol%) FSWCNT, without adjusting the amount of the anhydride curing agent. This was because of non-stoichiometry of the epoxy matrix that was caused by the fluorine on the single-wall carbon nanotubes. The correct amount of the anhydride curing agent needed to achieve stoichiometry was experimentally examined by dynamic mechanical analysis (DMA). The storage modulus of the epoxy at room temperature (which is below the glass transition temperature of the nanocomposites) increased up to 0.63 GPa with the addition of only 0.30 wt% (0.21 vol%) of FSWCNT, representing an up to 20% improvement compared with the neat epoxy. The Izod impact strength slightly decreased when the amount of FSWCNT was increased to 0.3 wt%. The excellent improvement in the storage modulus was achieved without sacrificing impact strength. (C) 2004 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available